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ABSTRACT
Recent observations of Rossby waves and other more exotic forms of inertial oscillations in the Sun’s con-

vection zone have kindled the hope that such waves might be used as a seismic probe of the Sun’s interior. Here
we present a 3D numerical simulation in spherical geometry that models the Sun’s convection zone and upper
radiative interior. This model features a wide variety of inertial oscillations, including both sectoral and tesseral
equatorial Rossby waves, retrograde mixed inertial modes, prograde thermal Rossby waves, the recently ob-
served high-frequency retrograde (HFR) vorticity modes, and what may be latitudinal overtones of these HFR
modes. With this model, we demonstrate that sectoral and tesseral Rossby waves are ubiquitous within the
radiative interior as well as within the convection zone. We suggest that there are two different Rossby-wave
families in this simulation that live in different wave cavities: one in the radiative interior and one in the con-
vection zone. Finally, we suggest that many of the retrograde inertial waves that appear in the convection zone,
including the HFR modes, are in fact all related, being latitudinal overtones that are mixed modes with the
prograde thermal Rossby waves.

Keywords: Solar interior (1500); Internal waves (819); Astrophysical fluid dynamics (101); Solar oscillations
(1515)

1. INTRODUCTION

Although Rossby waves and other inertial oscillations have
been extensively studied for the past eighty years, their re-
cent observation on the Sun has revived an interest in the so-
lar physics community, particularly in their potential uses for
helioseismology. The Rossby waves themselves are likely to
be a sensitive diagnostic of the convection zone’s superadi-
abaticity (e.g., Gilman 1987), and the subsequent detection
of high-latitude inertial oscillations (Gizon et al. 2021) has
the potential to open up seismic exploration of the polar caps
where many dynamo processes are likely to operate.

Rossby waves were first observed on the surface of the Sun
by Löptien et al. (2018), who observed sectoral modes, i.e.,
modes with eigenfunctions that lack latitudinal nodes. This
initial discovery has since been confirmed using a variety of
techniques and data sets (e.g., Alshehhi et al. 2019; Hana-
soge & Mandal 2019; Liang et al. 2019; Hanson et al. 2020;
Proxauf et al. 2020; Gizon et al. 2021; Hathaway & Upton
2021; Waidele & Zhao 2023). More recently, Triana et al.
(2022) noted the possible presence in the observational data
of tesseral Rossby modes, which have one or more latitudinal
nodes in their eigenfunctions. Other types of inertial modes
have also been observed, such as high-latitude and critical-
latitude inertial modes (Gizon et al. 2021) and the mysteri-
ous high-frequency retrograde (HFR) waves (Hanson et al.
2022), which currently lack a thorough theoretical explana-
tion.

Conversely, there are theoretically expected inertial oscil-
lations that have not yet been observed. For example, ther-
mal Rossby waves are a class of prograde-propagating iner-
tial waves that have long appeared in simulations (e.g., Busse
1970; Hindman et al. 2020; Bekki et al. 2022a; Hindman &
Jain 2022, 2023; Jain & Hindman 2023) and in laboratory
experiments (e.g., Mason 1975; Busse & Hood 1982; Azouni
et al. 1985; Chamberlain & Carrigan 1986; Cordero & Busse
1992; Smith et al. 2014; Lonner et al. 2022), but have yet to
be detected observationally in the Sun.

Bekki et al. (2022b) additionally predicts the presence of
a “mixed mode” comprised of a prograde branch of ther-
mal Rossby waves with one latitudinal node and a retrograde
branch of inertial waves with one radial node. This mode
is mixed in the sense that the Yanai mode is mixed (e.g.
Gill 1982), with differing behavior between the retrograde
and prograde branches. The prograde branch of Yanai waves
is essentially composed of internal gravity waves, while the
retrograde branch is composed of planetary Rossby waves.
Bekki et al. (2022b) refers to the retrograde branch of the
mixed mode that they have identified as an equatorial Rossby
wave with one radial node. However, this mode has signifi-
cant vertical motion and thus does not behave like a typical
equatorial Rossby wave. For this reason, we refer to them as
retrograde mixed modes throughout. In this work, we addi-
tionally suggest that this mode is just a single member of a
family of mixed modes that reside only in convection zones

ar
X

iv
:2

31
2.

14
27

0v
1 

 [
as

tr
o-

ph
.S

R
] 

 2
1 

D
ec

 2
02

3

http://orcid.org/0000-0001-9004-5963
http://orcid.org/0000-0001-7612-6628
http://orcid.org/0000-0001-9001-6118
songyongliang


songyongliang


songyongliang




2

where the stratification is nearly neutrally stable. This fam-
ily may include the observed HFR modes, which also evince
strong vertical motions.

Although Rossby waves have been a mainstay in meteo-
rology since their discovery in the late 1930s (Rossby 1939;
Haurwitz 1940), the theoretical work on Rossby waves in
a stellar context has been more sporadic. Papaloizou &
Pringle (1978) introduced the concept of “r-modes” to the
stellar physics community when they noticed Rossby waves
amongst the solution set for low-frequency oscillations of
rotating stars. Provost et al. (1981), Smeyers et al. (1981),
and Saio (1982) studied the eigenfunctions and radial struc-
ture of these modes in the case of slow, spatially uniform
rotation. Wolff & Blizard (1986) focused on the radial be-
havior of r-modes in the Sun’s interior, concluding that the
r-modes exist in two separate cavities: one cavity in the ra-
diative interior and one in the convection zone. The splitting
of the Rossby waves into two distinct families arises due to
the sign of the Ledoux discriminant; waves in an unstable
stratification propagate in a fundamentally different manner
than those in a stable stratification (see also Albekioni et al.
2023).

The recent observations of inertial waves in the Sun have
prompted a flurry of theoretical work to better understand
which modes can exist in the convection zone and how dif-
ferent physical processes impact these modes. The bulk of
this work has been in the form of linear eigenmode calcula-
tions (e.g., Gizon et al. 2020; Bekki et al. 2022b; Triana et al.
2022; Hindman & Jain 2022, 2023; Bhattacharya & Hana-
soge 2023; Bekki 2023), but the work of Bekki et al. (2022a)
examined the inertial modes appearing in a nonlinear numer-
ical simulation with a spatial domain that spanned the solar
convection zone. Here, we adopt a similar methodology and
explore the inertial modes that manifest in a numerical sim-
ulation, but our spatial domain includes both a convection
zone and a significant portion of the underlying stably strati-
fied radiative interior.

We find a veritable menagerie of waves that have all been
self-consistently excited in a solar-like environment. In par-
ticular, the model features equatorial Rossby waves in the ra-
diative interior, tesseral equatorial Rossby waves in the con-
vection zone, and high-frequency retrograde (HFR) waves of
latitudinal orders that have not been noted previously.

The paper is organized as follows. Section 2 provides de-
tails of the simulation and code. Section 3 describes the spec-
tra that make up the bulk of our analysis. Section 4 focuses on
the equatorial Rossby waves found in the radiative interior,
while Section 5 covers the many types of waves found in the
convection zone. Section 6 summarizes our findings and dis-
cusses the implications of our work, including the possibility
of two families of Rossby waves as well as the classification
of HFR modes.

2. METHODS

2.1. The Rayleigh Code

This numerical model was generated using the Rayleigh
convection code (Featherstone et al. 2021; Featherstone &

Hindman 2016a; Matsui et al. 2016), which solves the fluid
equations in rotating spherical geometry using the pseudo-
spectral algorithm from Glatzmaier (1984) and Clune et al.
(1999). Each physical variable is represented as a linear com-
bination of spectral components, with each component con-
sisting of the product of a spherical harmonic Y m

l (θ, ϕ) and
a Chebyshev polynomial Tk(r). The three spherical coordi-
nates r, θ, and ϕ, are the radius, colatitude, and longitude,
respectively, and r̂, θ̂, and ϕ̂ represent the local unit vectors
pointing in these three directions. In the spectral represen-
tation, l is the harmonic degree, m is the azimuthal order,
and k is the radial order. The fluid variables are updated at
each timestep using a second-order Crank–Nicolson scheme
that handles most of the linear terms in the fluid equations
directly in spectral space. The nonlinear terms and the Cori-
olis term are calculated using an Adams–Bashforth algorithm
that is performed in physical space after transformation from
the spectral representation.

Because our flows are low Mach number, we linearize
the thermodynamic variables about a reference state and as-
sume a solenoidal mass flux. Specifically, we use the Lantz-
Braginsky-Roberts (LBR) formulation (Lantz 1992; Bragin-
sky & Roberts 1995) of the anelastic MHD equations (e.g.,
Gough 1969; Gilman & Glatzmaier 1981) in the rotating
frame, given by

ρ̂

[
∂v

∂t
+ v ·∇v + 2Ω0 × v

]
=

gρ̂ s′

cP
r̂

− ρ̂∇
(
P ′

ρ̂

)
+

1

4π
(∇×B)×B +∇ ·D , (1)

ρ̂T̂

[
∂s′

∂t
+ v ·∇s′ + vr

dŝ

dr

]
= ∇ ·

[
ρ̂T̂ κ∇s′

]
+Q+Φ+

η

4π
|∇×B|2 , (2)

∂B

∂t
= ∇× (v ×B − η∇×B) , (3)

Dij = 2ρ̂ν

[
eij −

1

3
(∇ · v) δij

]
, (4)

Φ = 2ρ̂ν

[
eijeij −

1

3
(∇ · v)2

]
, (5)

∇ · (ρ̂v) = 0 , (6)
∇ ·B = 0 , (7)

where the primary variables are the velocity v, magnetic field
B, and the fluctuations of the gas pressure P ′ and specific en-
tropy density s′ about the corresponding reference-state pro-
files. The angular velocity of the rotating reference frame,
Ω0, is aligned with the axis of the spherical coordinate sys-
tem. The gravitational acceleration is given by g(r); the vis-
cous, thermal and magnetic diffusivities by ν(r), κ(r), and
η(r), respectively; cP is the specific heat capacity at con-
stant pressure; and eij is the rate-of-strain tensor. The radial
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profiles ρ̂(r) and T̂ (r) are the time-independent, spherically
symmetric reference-state density and temperature, which
satisfy the ideal gas law, and dŝ/dr is the reference-state
entropy gradient. The equation of state for an ideal gas is
linearized and expressed in terms of the fluctuations about
this reference state. The momentum equation includes the
Coriolis, buoyancy, pressure gradient, Lorentz, and viscous
forces. The thermal energy equation includes conductive,
Ohmic, and viscous heating, as well as an internal heating
term Q(r) that represents radiative heating. The internal
heating is normalized to deposit a solar luminosity of heat,
which is distributed preferentially in roughly the bottom third
of the convection zone (for details, see Featherstone & Hind-
man 2016a).

2.2. The Numerical Experiment

This MHD model evinces a self-consistently established
tachocline that is in a statistical steady state. We previously
explored the properties of this tachocline and the balances
that enable its formation in Matilsky et al. (2022) (see also
Matilsky et al. 2023). The simulation spans a spherical shell
covering the upper radiative interior and lower convection
zone, extending between the radii rmin = 0.491R⊙ and
rmax = 0.947R⊙, where R⊙ = 6.957× 1010 cm is the solar
radius. The transition from convective stability to instability
is primarily controlled by the entropy gradient of the refer-
ence state dŝ/dr and occurs at rbcz = 0.729R⊙. Convective
downflows overshoot into a thin layer within the stable re-
gion, the base of which is rov = 0.710R⊙.

The spherical shell spans roughly the upper two density
scale heights of the radiative interior and the bottom three
density scale heights of the Sun’s convection zone. The hor-
izontal grid resolution is Nθ = 384 and Nϕ = 768, cor-
responding to a maximum spherical harmonic degree after
de-aliasing of lmax = 255. In the radial direction, there are
three stacked Chebyshev domains with 64 points each, with
interior boundaries located at 0.669 R⊙ and 0.719 R⊙. The
stacked grids provide substantially higher radial resolution in
the tachocline and overshoot layer (Matilsky et al. 2022).

The background entropy gradient is a positive constant in
the radiative interior and zero in the convection zone. The
following smooth profile connects the two domains:

dŝ

dr
= σ


1 r ≤ r0 − δ ,

1−
[
1−

(
r−r0
δ

)2]2
r0 − δ < r < r0 ,

0 r ≥ r0 ,

(8)

where σ ≡ 10−2 erg g−1 K−1 cm−1, δ ≡ 0.05R⊙, and
r0 = 0.719R⊙. The gravitational acceleration is given by

g(r) =
GM⊙

r2
, (9)

where G is the universal gravitational constant and M⊙ =
1.989× 1033 is the solar mass.

The rotation rate is given by Ω0/2π = 1370 nHz, and a
solar luminosity L⊙ = 3.85×1033 erg s−1 is driven through

Table 1
Non-dimensional Fluid Parameters

Parameter Definition Value

RaF
g̃F̃H4

cP ρ̃T̃ ν̃κ̃2 5.68× 105

Ek
ν̃

2Ω0H2 5.35× 10−4

Pr
ν̃
κ̃

1

Prm
ν̃
η̃

4

Roc

(
RaF Ek2

Pr

) 1
2

0.403

Bu
Ñ2

4Ω2
0

6.35× 103

Table 1. The flux Rayleigh number RaF, Ekman number Ek,
Prandtl number Pr, magnetic Prandtl number Prm, convective
Rossby number Roc, and buoyancy parameter Bu for the numeri-
cal simulation have been defined using volumetric averages of the
reference state profiles. Averages for the first five parameters are
taken over the convection zone only, while the buoyancy frequency
is averaged over the radiative interior only. These quantities are in-
dicated by use of a tilde over the variable.

the convection zone via the temporally steady internal-
heating profile Q(r) (for details see Matilsky et al. 2022).
The viscous, thermal, and magnetic diffusivities at the top of
the domain are given by ν(rmax) = κ(rmax) = 5 × 1012

cm2 s−1 and η(rmax) = 1.25× 1012 cm2 s−1, respectively.
All diffusivities increase with radius, varying like ∼ ρ̂−1/2.

At both boundaries, we use stress-free and impenetrable
conditions on the velocity, i.e.,

vr =
∂

∂r
(vθ/r) =

∂

∂r
(vϕ/r) = 0 . (10)

We impose a fixed conductive flux at the inner and outer
spherical boundaries, using

∂s′

∂r

∣∣∣∣
rmin

=0 , (11)

∂s′

∂r

∣∣∣∣
rmax

= − L⊙

4πr2κ(r)ρ̂(r)T̂ (r)

∣∣∣∣∣
rmax

. (12)

No heat is allowed to enter at the bottom of the domain, and
at the top of the domain, heat exits via thermal conduction.
Potential field matching conditions are used on the magnetic
fields at both boundaries.

Although we ran the simulation dimensionally, its pa-
rameter regime can be uniquely described by the non-
dimensional parameters given in Table 1, where the tildes
indicate volume-averaged quantities and H = rmax − rbcz is
the depth of the convection zone. We adopt the flux Rayleigh
number RaF, where F is the energy flux imposed by radia-
tive heating, i.e., the flux not carried by the radiation field
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(see Featherstone & Hindman 2016b). Ek is the Ekman
number, which controls the importance of viscosity relative
to rotation. The convective Rossby number Roc character-
izes the relative strength of the buoyancy and Coriolis forces
and often determines the degree of rotational influence on the
convection (Aurnou et al. 2020; Camisassa & Featherstone
2022). The Prandtl number Pr and the magnetic Prandtl num-
ber Prm specify the various ratios of the viscous, thermal,
and magnetic diffusion coefficients. The buoyancy parame-
ter Bu assesses the stiffness of the radiative interior.

2.3. Simulation Summary

This model has a solar-like differential rotation profile,
with the equator rotating faster than the polar regions, il-
lustrated in Figure 1. Dynamo action creates a large-scale,
cycling, non-axisymmetric magnetic field whose torque en-
forces solid-body rotation in the radiative interior and main-
tains a tachocline (see Matilsky et al. 2022). The rotation
rate is given by Ω(r) = Ω0 + ⟨vϕ⟩/r sin θ, where the an-
gular brackets refer to a combined temporal and zonal av-
erage, and Ω0 is the frame rate. Figure 1 shows non-
dimensionalized differential rotation profile (Ω − Ω0)/Ω0.
Here and in Figure 2, the pink dash-dotted lines indicate
the base of the tachocline at rtach = 0.641R⊙ and the
black dashed lines indicate the base of the convection zone
at 0.729R⊙. The model evinces 0.04Ω0 difference in the
rotation rate from pole to equator in the convection zone,
whereas in the radiative interior the pole-to-equator contrast
is roughly 0.0015Ω0.

Figures 2a and 2b display the kinetic and magnetic energy
densities as functions of radius across the entire domain. The
contributions to the kinetic energy from the horizontal and
radial velocity components are similar in magnitude through-
out the convection zone. Across the tachocline, the contribu-
tion from the radial velocity component drops by eight orders
of magnitude, while the horizontal velocities only decrease
by four orders of magnitude. The fact that horizontal veloc-
ities tend to be significantly higher than vertical velocities
in simulations has been noted multiple times in past work
(e.g., Alvan et al. 2015; Lawson et al. 2015). In Section 4,
we determine that this enhanced horizontal power is due to
a rich spectrum of equatorial Rossby waves. Similarly, the
magnetic field is primarily horizontal in the radiative interior
compared to the convection zone, with the radial field com-
ponent being smaller by roughly an order of magnitude (or
two orders of magnitude in the square of the field compo-
nents).

Figure 2c, shows the radial behavior of the dynamic El-
sasser number as defined by Soderlund et al. (2012):

Λd(r) =
1

4π

B2

2ρ̂Ω0UL
, (13)

where B(r) is the spherically averaged rms field strength, L
is the characteristic length scale for the magnetic field, and
U(r) is the spherically averaged rms flow speed. We choose
L = πR⊙/2, or a length scale corresponding to a large-scale

field component with a harmonic degree of l = 2. Matil-
sky et al. (2023) has demonstrated that the magnetic field
in this simulation is concentrated in the low-order spherical-
harmonic components. The Elsasser number compares the
strength of the Coriolis force to that of the Lorentz force. An
Elsasser number greater than one indicates that the Lorentz
force dominates the dynamics, whereas an Elsasser number
of less than one indicates that the Coriolis force dominates.
The Elsasser number in this simulation is always quite small
(Λd < 10−2), hence the wave dynamics are rotationally
rather than magnetically constrained. Thus, even though the
magnetic field is crucial in the dynamics of the mean flows,
the inertial waves can essentially be treated as nonmagnetic
and hydrodynamic.

3. SUMMARY OF WAVE SPECTRA

We illustrate the wave fields in our model through spec-
tra of the radial component of the vorticity. These spectra
are obtained with Fourier transforms in time t and spherical
harmonic transforms in the horizontal coordinates θ and ϕ.
The resulting decomposition of the data is four-dimensional
with each spectral component being a function of temporal
frequency ω, radius r, harmonic degree l, and azimuthal or-
der m. An individual spherical harmonic possesses a number
of nodes in latitude equal to λ = l − |m|, which we call
the latitudinal order. The waves with λ = 0, or l = ±m,
are the sectoral modes, which have zero nodes in latitude.
The tesseral modes have λ > 0 (or l > |m|) and have at
least one latitudinal node. Without loss of generality, we of-
ten choose to illustrate only positive values of the azimuthal
order (m > 0) and adopt the convention that negative fre-
quencies correspond to modes propagating in the retrograde
direction and positive frequencies in the prograde direction.

We generate spectra at fifteen different radii throughout the
spatial domain, with five samples each in the radiative inte-
rior (0.502 R⊙–0.65 R⊙), tachocline (0.678 R⊙–0.728 R⊙),
and convection zone (0.731 R⊙–0.935 R⊙). The simulation
was run with a maximum spherical harmonic degree of 255,
but we only present spectra for m ≤ 80. The Fourier trans-
form was taken over a single contiguous realization of about
200 years in duration (or 8770 rotational periods), resulting
in spectra with a Nyquist frequency of 5000 nHz and a fre-
quency resolution of 0.156 nHz. In terms of a dimensionless
frequency ω/Ω0, this corresponds to a Nyquist frequency of
3.6 and frequency resolution of 1.1× 10−4.

Figure 3 displays power spectra of the radial vorticity, av-
eraged over the radiative interior (left), tachocline (center),
and convection zone (right). To more clearly see each type of
wave and its behavior, the top row displays the sum of wave
modes with even λ = 0, 2, 4, and 6, which are symmetric
across the equator, while the bottom row displays the sum of
modes with odd λ = 1, 3, and 5, which are anti-symmetric
across the equator. Summing the power only over large spa-
tial scales, or low latitudinal orders (λ < 7), removes a sig-
nificant amount of nonmodal power arising from convective
noise. We additionally scale each m individually to make
the mode relationships more visible across all length scales.
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Figure 1. Rotation profile achieved in our simulation—This model features a differentially rotating convection zone and rigidly
rotating radiative interior. (a) The azimuthally and temporally averaged rotation profile measured relative to the frame rate shown
in a meridional cross-section. The north pole of the coordinate system is vertical on the page. The dashed black semi-circle
indicates the base of the convection zone and the dash-dotted magenta semi-circle shows the bottom of the tachocline. (b) Radial
cuts at several latitudes (indicated by labels) through the azimuthally averaged profile. The inset shows a magnified view of the
rotation rate in the radiative interior, which has about 0.0015Ω0 of latitudinal differential rotation.

Figure 2. Energy densities achieved in the simulation—The velocity and magnetic field are primarily horizontal within the
radiative interior. (a) Spherically-averaged fluctuating kinetic energy density separated into the contributions from each velocity
component. Fluctuating velocities are defined by v′i ≡ ⟨(vi − ⟨vi⟩)2⟩1/2, where ⟨⟩ denotes a temporal and spherical average over
the equilibrated state. The horizontal contributions are orders of magnitude larger than the radial contribution within the radiative
interior. (b) Spherically-averaged magnetic energy density, where the fluctuating magnetic field components are defined in the
same rms manner as the velocity fluctuations. The horizontal contributions of the magnetic field again dominate the vertical
contribution, though this dominance is less than for the velocity field. (c) Dynamic Elsasser number, as defined by Equation (13).
The Elsasser number is everywhere tiny, so the inertial waves are largely a hydrodynamic phenomenon with magnetism only
acting as a small perturbation.
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Figure 3. Waves in the radiative interior, tachocline, and convection zone—Power spectra of the radial vorticity as a function
of azimuthal order m and dimensionless temporal frequency ω/Ω0, averaged over the radiative interior (left), tachocline (center),
and convection zone (right). The top row displays the sum of power from modes that are symmetric about the equator with
λ = l −m = 0, 2, 4, and 6, and the bottom row displays the sum of power from anti-symmetric modes with λ = l −m = 1, 3,
and 5. The power is scaled separately for each m, so that the maximum power at any given m has a value of unity. The
images are shown with a logarithmic color table. We note a rich wavefield in both the radiative interior and convection zone. In
particular, sectoral and tesseral Rossby waves are present throughout the domain, along with ridges of high-frequency power in
the convection zone corresponding to HFR modes.
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Because the dynamic range of each plot was chosen to max-
imize the visibility of select features, we have elected not to
display a color bar. Instead, corresponding line profiles for
each wave type provide the relevant magnitudes. The result-
ing spectrum clearly illustrates in a single image the various
types of inertial oscillations that are present in each portion
of the spatial domain.

We discuss each of these wave types in the following sec-
tions. In the radiative interior, we find both sectoral and
tesseral modes of equatorial Rossby waves (Section 4). In the
tachocline and convection zone, sectoral and tesseral Rossby
waves once again appear (Section 5.1), along with thermal
Rossby waves (Section 5.2), retrograde mixed modes (Sec-
tion 5.3), and HFR modes with what are potentially their lat-
itudinal overtones (Section 5.4).

3.1. Doppler-Shift

If the modes live in a region rotating at a rate Ω different
from our frame rate Ω0 (i.e., Ω = Ω0 + ∆Ω), then a wave
of azimuthal order m and intrinsic frequency ω′ will be ob-
served in the reference frame of the simulation (rotating at
rate Ω0) as having the Doppler-shifted frequency

ω = ω′ +m∆Ω , (14)

(e.g., Bretherton & Garrett 1968).
It is important to note that both the observed and intrin-

sic frequency of a normal mode do not change with spatial
position; the same ∆Ω correction can be applied across the
entire domain. The Doppler shift that relates these two fre-
quencies is a spatial average of the rotation-rate difference
over the region where the mode’s eigenfunction has a signif-
icant amplitude. Therefore, the Doppler shift depends on the
radial and latitudinal eigenfunctions. For waves living in the
radiative interior, which is rotating mostly like a solid body,
we can easily apply a ∆Ω that is simply the difference be-
tween our frame rate and the rotation rate of the radiative in-
terior. Since the radiative interior is rotating slightly slower
than our frame rate, the correction is negative (∆Ω < 0).
For waves that reside in the convection zone, the situation
is more complicated because the rotation profile of the con-
vection zone varies significantly in both radius and latitude.
Different modes that occupy different parts of the convection
zone will sense a different mean rotation rate. Thus, with-
out knowing the detailed shape of the eigenfunctions, we can
only make informed guesses for the exact Doppler shift that
should be applied.

4. WAVES IN THE RADIATIVE INTERIOR

In the radiative interior, we observe a rich spectrum of
equatorial Rossby waves. Both sectoral and tesseral modes
are present, with power distributed relatively widely amongst
the distinct modes. We explore the nature of these waves in
the following subsections.

4.1. Rossby-Wave Spectra

The left-hand column of Figure 3 makes clear that both
sectoral and tesseral equatorial Rossby waves are present in
the radiative interior of our simulation. Figure 4a displays
the power spectrum in radial vorticity, averaged over the ra-
diative interior, summed over all latitudinal orders (or equiv-
alently, over all harmonic degrees). The black dots denote a
theoretical estimate of the frequencies,

ω = m∆Ω− 2mΩ0

l(l + 1)
. (15)

This dispersion relation is derived for purely hydrodynamic,
equatorial Rossby waves in two horizontal dimensions with
solid-body rotation at a frame rate of Ω0 (Haurwitz 1940).
For such a spherically symmetric system, the eigenfunctions
for the Rossby waves are pure spherical harmonics. Since the
radiative interior of our model is rotating slightly slower than
the frame rate (with a difference of ∆Ω ≈ −0.0015Ω0, see
Figure 1), we have applied a Doppler shift to the traditional
dispersion relation.

In Figure 4a, the sectoral modes are the ridge labeled λ =
0. The tesseral modes have smaller frequencies in magni-
tude, with each ridge moving closer to zero frequency as the
latitudinal order λ increases. The first set of tesseral modes
with λ = 1 are labeled. As expected, all of the equatorial
Rossby waves have a negative frequency and thus propagate
in the retrograde direction. Ridges with λ = 2, 3, and 4 are
also visible. Higher-order ridges are less clear because the
spacing between adjacent ridges falls below their line widths,
leading to blending of the individual peaks. This blurring
is more obvious in Figure 4b, which displays a cut through
the radial-vorticity power spectra at m = 2 for 0.595R⊙,
summed over all l. One can clearly identify peaks matching
modes for m = 2 and l = 2, 3, 4, 5, and 6. In addition to
these distinct peaks, at low frequencies, there is a collection
of modes with l > 6 that have blended together. The green
dotted line in Figure 4b denotes a contribution from a mode
with a different m-value, specifically the m = 3 sectoral
mode. This “leakage” results from an extremely weak mis-
alignment of the mean angular momentum vector with the
axis of the spherical coordinate system caused by numerical
noise in the simulation.

Modes with λ as high as 10 are visible in the power profiles
for individual spherical harmonic components, as shown in
Figure 5 for m = 2 and m = 6. Each panel displays, from
left to right, peaks with λ = 0 to λ = 10. The separation
between the peaks decreases with increasing λ, but they are
all clearly separated from the zero-frequency feature. With
this in mind, the radiative interior of our model features far
more equatorial Rossby-wave modes than are evident in the
latitudinally summed spectral images.

Almost all of the horizontal power in the radiative interior
is in the inertial band of frequencies, and the power profiles in
Figures 4 and 5 rise up to eight orders of magnitude above the
power background, indicating that these equatorial Rossby
waves are the most prominent contributor to the horizontal
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Figure 4. Equatorial Rossby waves in the radiative
interior—(a) Power spectra in radial vorticity as a function
of azimuthal order m and dimensionless temporal frequency
ω/Ω0, averaged over the radiative interior and summed over
all latitudinal orders. The λ = 0 and λ = 1 ridges are la-
beled. The power is scaled separately for each m, so that
the maximum power at any given m has a value of unity, and
shown with a logarithmic color table. The black dots indicate
the theoretical values given by Equation (15). A large num-
ber of both sectoral and tesseral equatorial Rossby modes are
present throughout the radiative interior. (b) m = 2 power
profile at radius 0.595R⊙, summed over all λ, binned down
in frequency by a factor of 32. The dashed black lines mark
the theoretical values given by Equation (15) for the labeled
pairs (l,m). The green dotted line denotes power contributed
by a mode with a different value of m (arising from a weak
misalignment of the mean angular momentum vector and the
spherical coordinate axis caused by numerical noise.) The
modes blur together near zero frequency since their separa-
tion falls below the mode linewidths. Given that these peaks
rise orders of magnitude above the noise floor, the vast major-
ity of power in the radiative interior is concentrated in equa-
torial Rossby waves.

Figure 5. Rossby-wave power profiles—Power spectra of
the radial vorticity as a function of dimensionless temporal
frequency ω/Ω0 for modes with 0 ≤ λ ≤ 10 and (a) m = 2
and (b) m = 6. The power is taken at a radius of 0.595R⊙
and binned down in frequency by a factor of 32. The peaks
from left to right correspond to increasing values of λ (or
equivalently l). The higher λ modes are clearly present, but
when their power is summed together (as in Figure 4b), their
frequency separation falls below their linewidths, and they
become an indistinguishable blur. The green dotted lines de-
note power contributed by modes with a different value of m,
labeled by (l, m).

velocity components vθ and vϕ. The rms velocity summed
across all modes has a typical speed of 50 cm s−1, which ex-
plains the enhanced velocities in the radiative interior noted
by Lawson et al. (2015) and Matilsky et al. (2022) and sug-
gests that the radiative interior is not as quiescent as is often
believed.

For completeness, we note that all of the temporal spectra
for individual spherical harmonic components (see Figure 5)
display a common power peak at a slightly negative fre-
quency that is very near zero. In the spectra for m = 6 (panel
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Figure 6. Eigenfunction perturbations from asphericity—
Power for individual equatorial Rossby wave modes as a
function of harmonic degree, demonstrating that the mode
eigenfunctions are not a single spherical harmonic. (a) Ra-
dial vorticity power spectra for m = 2 in the radiative inte-
rior. (b) Power as a function of harmonic degree l, summed
over a narrow frequency window. The central frequency of
the band is found by computing the mean of the power dis-
tribution, and the width of the window is 10σ, where σ is
the standard deviation. The power is clearly concentrated
in a single spherical harmonic component with weak spread
across nearby spherical harmonic components lying within
±2 of the principal component.

b) this feature appears around -7 nHz (or ω/Ω0 ≈ 5×10−3).
This power feature is is likely due to the dynamo cycle which
has a similar frequency (see Matilsky et al. 2022, 2023).

4.2. Latitudinal Eigenfunctions

An eigenmode for a Rossby wave living on a 2D spherical
surface undergoing solid-body rotation has a single spherical
harmonic for its eigenfunction and an eigenfrequency given
by Equation (15). While the frequencies of the Rossby waves
in our model are described well by this equation, small dis-

cursions from spherical symmetry in the radiative interior,
such as differential rotation (see the inset in Figure 1) and
magnetism, cause small perturbations to both the eigenfre-
quencies and the eigenfunctions. Thus, we anticipate that a
given horizontal eigenfunction will be dominated by a single
spherical harmonic with a given harmonic degree l0 (Y m

l0
),

but will also contain weak contributions from spherical har-
monics Y m

l with the same azimuthal order m and nearby val-
ues of the harmonic degree l ≈ l0. Figure 5 clearly evinces
such behavior. A spectrum for a specific harmonic degree
has not only a single large peak, but also a sequence of small
subsidiary peaks at the frequencies associated with other har-
monic degrees. The upper panel of Figure 6 shows the power
spectra in radial vorticity for modes with m = 2, plotted ver-
sus frequency and harmonic degree l. Though most power
sits in the dominant spherical harmonic Y m

l0
, there is some

power that spreads across other l values for each mode. The
lower panel displays power integrated around a narrow fre-
quency band centered around the appropriate peak for three
modes with m = 2 and l0 = 3, 4, and 5. It is clear that
the power peaks at the harmonic degree l0 of the dominant
spherical harmonic component, but the eigenfunctions have
small perturbations (probably due to the differential rotation)
that spread significant power over harmonic degrees within
±2 of the dominant degree.

5. WAVES IN THE CONVECTION ZONE

The right-hand column of Figure 3 reveals a wide vari-
ety of different inertial oscillations present in the convection
zone. To begin the exploration of these modes, Figure 7 il-
lustrates the power in radial vorticity at three different radii
within this region. The top row is the sum over the power in
equatorially symmetric modes with λ = 0 and λ = 2, while
the bottom row is the sum over the power in the antisym-
metric modes λ = 1 and λ = 3. Filled black circles mark
equatorial Rossby waves (Section 5.1), numbers 0–2 mark
thermal Rossby waves (Section 5.2), roman numeral I marks
the retrograde mixed mode (Section 5.3), and roman numer-
als II–VI mark HFR modes and their latitudinal overtones
(Section 5.4).

5.1. Equatorial Rossby Waves

Within the convection zone, equatorial Rossby waves are
still present, though they are far less prominent than in the
radiative interior due to the presence of other convective and
wave motions. From the right-hand column of Figure 3, we
note that the sectoral modes for 2 ≤ m ≤ 8 remain, along
with several tesseral modes for λ ≤ 4. This figure is av-
eraged over the entire convection zone, so these modes are
present somewhere in that region and not necessarily signifi-
cant throughout.

In Figure 7, the black dots denote the theoretical values
given by Equation (15). Because we do not know where these
modes live, and since the shift appears to be small, we have
opted not to apply a Doppler shift. At the base of the con-
vection zone (left-hand panels), sectoral and tesseral modes
are present and distinct for roughly m < 11. At the radius
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Figure 7. Waves in the convection zone—Power in radial vorticity as a function of azimuthal order m and dimensionless temporal
frequency ω/Ω0 at three different radii within the convection zone. The top row displays the sum of symmetric modes λ = 0 and
2, and the bottom row displays the sum of anti-symmetric modes λ = 1 and 3. The power is scaled separately for each m so that
the maximum power at any given m has a value of unity. The images are shown on a logarithmic color table. The filled black
circles are the expected values for equatorial Rossby waves from Equation (15) with no Doppler shift applied. Prograde thermal
Rossby-wave ridges are numbered via their latitudinal node number in vϕ, i.e., “0” indicates the Busse modes (no latitudinal
nodes), “1” indicates the Roberts modes (one node), “2” indicates modes with three latitudinally stacked convective columns
(two nodes), and so on. Roman numerals label retrograde inertial waves, with I denoting the retrograde mixed mode and II-VI
denoting HFR modes. The empty black circles and the empty black squares show the numerical frequencies from Bekki et al.
(2022b). Filled black squares denote the semi-analytic dispersion relation for thermal Rossby waves from Hindman & Jain
(2022). The plus signs denote the observed HFR values from Hanson et al. (2022). A Doppler shift of 0.015Ω0 was applied to
these four sets of values, as described in the text. This region features a wide variety of different inertial oscillations, some of
which have been observed on the Sun and some of which have not (for a summary, see Table 2).

closest to the surface (right-hand panels), the only modes that
are clearly visible are the sectoral modes for roughly m ≤ 5
(Figure 7c), λ = 1 tesseral modes for m < 7 (Figure 7f),
and the λ = 2 tesseral modes for m < 3 (Figure 7c). Further
discussion of mode properties is deferred to the Discussion
(Section 6.1).

5.2. Thermal Rossby Waves

Like equatorial Rossby waves, thermal Rossby waves re-
sult from the conservation of potential vorticity (e.g. Roberts
1968; Busse 1970). Rather than featuring motions con-
fined to a spherical shell (i.e., vθ and vϕ), thermal Rossby
waves manifest as prograde-propagating equatorial convec-
tive columns aligned with the rotation axis, hence possessing

velocity components in all three directions, but with the dy-
namically active components being in longitude, vϕ, and in
the cylindrical radius, vr sin θ + vθ cos θ (Hindman & Jain
2022; Jain & Hindman 2023). These waves can exist wher-
ever the Coriolis force rivals or dominates buoyancy. Hence,
they appear in the convection zone of our model and are ex-
cluded from the radiative interior.

The gravest frequency thermal Rossby wave, here called
a Busse mode, is the one that lacks latitudinal nodes in vϕ
(Busse 1970). Thus, the wave manifests as a parade of con-
vective columns wrapped around the equator, with each col-
umn consisting of a single, axially-aligned roll with unidi-
rectional spin. Because of this latitudinal dependence, in ra-



11

Figure 8. Power profiles for thermal Rossby waves and mixed modes—Selected power profiles from radial-vorticity power
spectra, binned down in frequency by a factor of 32. (a) Busse modes, shown for λ = 1 at a radius of 0.889R⊙. (b) Roberts
modes, shown for λ = 2, at a radius of 0.935R⊙. The power in the m = 0 mode is multiplied by a factor of two for clarity.
The bump labeled “3” may indicate the presence of a thermal Rossby wave with three nodes in latitude in vϕ. (c) The retrograde
branch of the mixed mode of Bekki et al. (2022b) shown for λ = 0 for m = 2, 4, and 6 and in λ = 2 for m = 0, at a radius of
0.935R⊙. The power in the m = 2 mode is multiplied by a constant factor of 3 for clarity. The (l,m) = (2, 0) mode, multiplied
by a constant factor of 20, is plotted to show its relation to the m = 0 mode in (b). Lorentzian fits have been overplotted in black
lines in Panels (a) and (c), and the corresponding values are listed in Tables 3 and 4, respectively. The thermal Rossby waves in
(a) appear to be stable with a Q factor of about 10. The prograde mixed modes in panel (b) and the retrograde mixed modes in
panel (c) both have the m = 0 mode illustrated, and it is clear that they have identical power profiles with ω → −ω.
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dial vorticity each convective column appears anti-symmetric
across the equator and contributes to the spherical harmonic
components with odd values of λ. In the lower panels of
Figures 3 and 7, this prograde-propagating thermal Rossby
wave appears as the positive frequency prong (labeled “0”
in Figure 7) that rises in frequency and asymptotes toward
the frame rotation rate Ω0 as the azimuthal order increases.
Hindman & Jain (2022) calculated the eigenfrequencies for
a neutrally stable layer in a local, equatorial, f -plane model.
We have adapted their calculation for the depth of the con-
vection zone appropriate for the simulation; the resulting
eigenfrequencies are overplotted in Figure 7 as filled black
squares. Because the Busse mode lives in the convection
zone near the equator, which is rotating faster than the frame
rate, we apply a Doppler shift to these eigenfrequencies. We
do not know the specifics of the radial eigenfunction, so we
cannot easily pick a theoretically motivated ∆Ω. Instead, we
take the volume-averaged equatorial rotation rate (between
±15◦ latitude) across the entire convection zone, resulting in
∆Ω = 0.015Ω0.

The narrow line widths of Busse’s thermal Rossby waves
suggest that the modes are stable and largely linear, with only
weak nonlinear coupling to other convective modes. Figure
8a displays select power profiles with λ = 1 for m = 2, 4,
and 6 at a radius of 0.889R⊙, binned down in frequency by a
factor of 32. We fit these binned profiles to a Lorentzian with
a linear background term, and these fits are listed in Table 3
and overplotted in Figure 8a with black lines. Widths rang-
ing between 0.03Ω0 and 0.08Ω0 indicate lifetimes of 10–
30 rotation periods. The quality factor, Q—i.e., the ratio of
the line width to the mode frequency—is about ten across all
eight modes. Further details regarding line fitting are found
in Appendix A.

In addition to Busse modes, i.e., the fundamental thermal
Rossby wave consisting of a single, axially aligned roll in
latitude (with a radial vorticity that is antisymmetric across
the equator), there is a clear signature in our spectra for the
first latitudinal overtone. Such thermal Rossby waves con-
sist of two counter-rotating rolls stacked in latitude, with one
node at the equator in vϕ. Since thermal Rossby waves of this
type were first explored by Roberts (1968), we refer to these
modes as Roberts modes, and they are labeled “1” in Figure
7. Such modes have a radial vorticity that is symmetric across
the equator and thus appear in the even values of λ. We
have overplotted the eigenfrequency calculations of Bekki
et al. (2022b) with open squares, with an applied Doppler
shift of 0.015Ω0. Roberts (1968) first examined these modes
in a Boussinesq system, but Jain & Hindman (2023) have
recently considered analytical solutions in a stratified atmo-
sphere. Such modes have also been detected by Bekki et al.
(2022b) in their linear-mode calculations where they have
noted that this family of waves smoothly transitions from the
branch of prograde thermal Rossby waves to a branch of ret-
rograde inertial waves with one radial node in radial vorticity
as the azimuthal order m passes through zero from positive
to negative values. We find the same (Section 5.3) and, fol-
lowing Bekki et al. (2022b), refer to this behavior where a

prograde branch and a retrograde branch are connected as
mixed modes.

Figure 8b shows select line profiles for the Roberts modes.
The modes appear in both λ = 0 and λ = 2 and appear clear-
est in λ = 2 at a radius near the surface of 0.935R⊙. Because
the line profiles are asymmetric about the peak frequency and
the background power has a strong nonlinear frequency de-
pendence, we have elected not to fit them for this work.

Beyond these two easily identifiable types of thermal
Rossby waves, we do find evidence of further latitudinal
overtones, both symmetric and antisymmetric across the
equator. In Figure 7f, there is a prograde, higher frequency
ridge of power (labeled “2”) that slopes downwards and
asymptotes towards the rotation rate. This is likely a ther-
mal Rossby wave with two latitudinal nodes in vϕ, or three
stacked columns, that is antisymmetric in radial vorticity
(i.e., three latitudinal nodes in radial vorticity). In Figure 8b,
an additional symmetric mode appears as a high-frequency
bump in power in m = 6 (near a frequency of ω = 1.3Ω0),
labeled “3” here and in Figure 7. The eigenfunctions of these
columnar waves are not spherical harmonics, so we expect
latitudinal overtones to be spread across multiple spherical-
harmonic components. Because this high-frequency bump
appears in an equatorially symmetric spherical harmonic, this
feature could indicate the presence of the mode with four
columns stacked in latitude and three latitudinal nodes in vϕ.
(In radial vorticity, there would be four latitudinal nodes.) In
Section 6.2 we speculate that these high-order modes corre-
spond to the prograde branches of mixed HFR waves.

5.3. Retrograde Mixed Modes

Throughout the tachocline and convection zone, there ex-
ists in the spectra for equatorially symmetric vorticity a
strong ridge of power at low m with frequencies that lie
between the ridges for the λ = 0 and λ = 1 equatorial
Rossby modes (top rows of Figures 3 and 7, labeled with ro-
man numeral I). Bekki et al. (2022b) referred to these modes
as sectoral equatorial Rossby modes with one radial node
(n = 1) and describe them as having a dominant λ = 0
component in vθ and a dominant λ = 1 component in vϕ,
which would result in the equatorially symmetric signature
that we see in the radial vorticity. The Doppler-shifted val-
ues (∆Ω = 0.015Ω0) from Table 2 of Bekki et al. (2022b)
are overplotted as empty black circles and match the ridges
rather well.

Figure 8c displays line profiles for the m = 2, 4, and 6
modes for λ = 0 at a radius of 0.935R⊙. The equatorial
Rossby wave (l,m) = (2, 2) is visible as the labeled tiny
peak on the far left, emphasizing that the mixed modes are
significantly wider and larger in amplitude. We again per-
form a Lorentzian fit with a linear background. These fits
are overplotted as solid black lines in Figure 8c, and the val-
ues are listed in Table 4. The widths of these peaks are typ-
ically 0.05Ω0, which corresponds to mode lifetimes of 20
rotations, and a Q-factor of between 2 and 10. While these
fits provide a good fit to the core of the line profile, and hence
a reasonable estimate for the linewidth, the fits to the wings
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and the power background are clearly inadequate. In par-
ticular, the wings are slightly asymmetric. Since we do not
currently have a good physical argument for this asymmetry,
we have elected to fit a symmetric Lorentzian with a linear
background rather than fit an asymmetric profile.

As discussed in Bekki et al. (2022b), these modes (in this
work, corresponding to Ridge I) are mixed modes. Specif-
ically these retrograde waves are smoothly joined through
m = 0 to the Roberts modes (Ridge 1 in the upper panels
of Figure 7), which have one node in latitude at the equator
in the variable vϕ (Section 5.2). In our spectra, where the
prograde waves are presented with positive frequencies and
the retrograde waves with negative ones, the mixed nature
appears as a common absolute frequency |ω| for the m = 0
mode of each branch. The (l,m) = (2, 0) mode is plotted in
Figure 8c, and it occurs at the same absolute frequency as the
corresponding m = 0 mode in Figure 8b.

5.4. HFR Modes

Following the observational discovery of HFR modes on
the Sun by Hanson et al. (2022), Triana et al. (2022) pro-
vided numerical evidence to support the identification of
HFR waves as a separate class from equatorial Rossby waves.
Using a linear eigensolver for the Boussinesq equations, Tri-
ana et al. (2022) found a class of equatorially antisymmet-
ric modes with similar frequencies to those in Hanson et al.
(2022) and featuring larger poloidal (i.e., vertical) kinetic en-
ergy than Rossby waves. Bhattacharya & Hanasoge (2023)
used an anelastic solver and generated qualitatively similar
high-frequency modes, along with an equatorially symmetric
branch that has not yet been observed. Bekki (2023) corrob-
orated the previous eigensolver results for the primary set of
anti-symmetric modes.

We find evidence for both the symmetric and antisymmet-
ric branches of the HFR modes. In Figure 7, there are three
anti-symmetric bands (labeled II, IV, and VI) and two sym-
metric bands (III, V) of retrograde-propagating inertial waves
occurring at frequencies of higher magnitude than the equa-
torial Rossby waves. The HFR waves observed by Han-
son et al. (2022), marked as plus signs on the figure with
a Doppler shift of ∆Ω = 0.015 Ω0, are anti-symmetric in
radial vorticity and found near the solar surface. The under-
lying anti-symmetric band of power in our spectra is most
likely these HFR modes. However, since the nature of the
HFR modes is still unclear from both an observational and
theoretical standpoint, this identification is based purely on
the equatorial symmetry and the similarity in frequencies.

In addition to this anti-symmetric ridge, we see a strong
ridge of power (III) in the spectra for modes that are symmet-
ric across the equator, for λ = 0 and λ = 2, that is similar
to the symmetric λ = 0 ridge seen by Bhattacharya & Hana-
soge (2023). Beyond these two prominent ridges, we note
additional bands of high-frequency power (IV, V, VI) that to
our knowledge have not been reported previously. These fea-
tures are also visible in Figure 9, which displays the corre-
sponding power profiles in radial vorticity for m = 9 and
λ = 0 through 4. These additional enhancements in power

are slight and extremely broad; hence, if modal, have an ex-
tremely low Q factor.

Figure 10 displays power spectra for the poloidal veloc-
ity |vθ|2 + |vr|2, summed over two different radii, with the
five HFR ridges again marked by roman numerals II-VI and
I denoting the retrograde mixed mode. Because the equa-
torial symmetries of vθ and vr are opposite, the modes are
denoted by the symmetry consistent with the radial vorticity;
the “symmetric modes” are the sum of |vθ|2 over λ = 0, 2
and |vr|2 over λ = 1, 3, and the antisymmetric modes are the
converse. Values from Bekki et al. (2022b) are marked with
open circles, and equatorial Rossby waves are marked with
closed circles. Panel (a) shows power with equatorial sym-
metry, with values from Bhattacharya & Hanasoge (2023)
overplotted as stars, while Panel (c) shows the antisymmetric
power, with observations from Hanson et al. (2022) overplot-
ted as plus signs, along with numerical values from Triana
et al. (2022) (triangles) and Bhattacharya & Hanasoge (2023)
(times signs), again all Doppler shifted by 0.015Ω0. We note
that Ridges II and III have the same equatorial symmetry and
similar frequencies as previous observations and numerical
calculations, with particular concordance with the results of
Bhattacharya & Hanasoge (2023).

A key feature of all of these modes is a significant ver-
tical velocity component, both deep within the convection
zone and at the surface. This property has been recognized
in previous studies (Triana et al. 2022; Bekki 2023) and is
quite evident from the spectra in Figure 10. Panels (b) and
(d) of Figure 10 show m = 9 power profiles for vθ and
vr spectra at two different radii. The vθ spectra have been
summed over equatorially symmetric (antisymmetric) power
λ = 0, 2 (λ = 1, 3). vr exhibits the opposite symmetry, so
the symmetric modes are the sum of λ = 1, 3 while the anti-
symmetric modes are the sum of λ = 0, 2. We note that while
vθ is a couple of orders of magnitude greater than vr at the
surface, the difference reduces to less than one order of mag-
nitude at the deeper radial slice, which qualitatively matches
previous findings (Triana et al. 2022; Bekki 2023)

It is highly probable that these five ridges (II–VI) and the
mixed retrograde wave (I) are all in the same family, with
higher-frequency ridges corresponding to modes of higher
latitudinal order. Further analysis is deferred to Section 6.2.

5.5. Impact of Differential Rotation on Convection

The final feature that we identify in the spectra is the con-
vection, which exhibits a Doppler shift due to the radial vari-
ation of the mean rotation rate. In Figure 3, this feature has
been averaged over several different radii and manifests as
the smear of power around and above zero frequency. Fig-
ure 11 shows the spectra in radial vorticity, for λ = 0, out
to m = 80 at three different radii in the convection zone.
The overplotted dashed black line shows the expected fre-
quency resulting from the Doppler shift due to the difference
between the local mean rotation rate and the frame rate Ω0.
At the base of the convection zone, the equatorial rotation
rate is almost the same as the frame rate, so the convective
power remains near zero frequency for all m. Higher in the
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Figure 9. Power profiles for the HFR modes—Power spectra in radial vorticity for m = 9 at a radius of 0.935R⊙ for latitudinal
orders that are (a) symmetric (λ = 0, 2) and (b) anti-symmetric (λ = 1, 3) across the equator. The power spectrum has been
binned down by a factor of 32 in frequency. We clearly see two symmetric and three antisymmetric high-frequency enhancements
in power, matching the labeled ridges in Figure 7. These five peaks are probably all in the same family, with higher-frequency
power corresponding to modes of higher latitudinal order.

convection zone, the equatorial rotation rate rises above the
frame rate by as much as 0.036Ω0, resulting in a significant
Doppler-shift and the sloped distribution of power present
in the center and right panels of Figure 11. The keen-eyed
reader will note the sectoral equatorial Rossby waves and the
retrograde mixed mode in the lower left of each panel, along
with a squished thermal Rossby-wave branch (prograde fre-
quencies) and an equatorially symmetric HFR branch (retro-
grade frequencies) in Panel (c).

6. DISCUSSION

This simulation simultaneously features a wide variety of
self-consistently excited inertial oscillations, some of which
have been seen previously in observations and models, and
some of which have not. Table 2 lists the waves discussed
in this work, where they exist in the simulation, if they have
been observed, and whether they have been seen in recent
models. Equatorial Rossby waves in the radiative interior,
tesseral equatorial Rossby waves in the convection zone, and
high-frequency retrograde vorticity waves have not been pre-
viously noted in a 3D convection simulation such as this one.
Because this model has a solar-like rotation profile (fast equa-
tor and slow poles) complete with stable and unstable regions
and a tachocline, it provides a useful tool to investigate how
these waves manifest and where their wave cavities reside.

6.1. Equatorial Rossby Waves

6.1.1. Are There Two Wave Cavities?

In their study of the radial behavior of r-modes, Wolff
& Blizard (1986) numerically calculated the first-order fre-
quency correction to Equation (15) for a solar interior model,
with a stably stratified radiative interior beneath an unsta-
ble convection zone. They found that there are two separate
wave cavities, one in the radiative interior and another in the
convection zone, with the frequency correction being of op-
posite sign in the two regions. Specifically, if we add the

frequency correction that arises from stratification, δωstrat to
Equation (15),

ω = m∆Ω− 2mΩ0

l(l + 1)
+ δωstrat , (16)

Wolff & Blizard (1986) found that the the frequency correc-
tion is positive for the convection zone cavity, δωstrat > 0,
and negative for the cavity in the stably stratified radiative
interior, δωstrat < 0. Further, Wolff & Blizard (1986) found
that such cavities can support radial overtones with differing
numbers of nodes in radius. In the following subsections we
explore both of these possibilities: that the Rossby modes
that we have observed in our numerical simulation live in
two distinct cavities and whether radial overtones might be
present.

A resonant normal mode has a single frequency that is in-
dependent of spatial position. Hence, we can attempt to dis-
tinguish between modes in the radiative interior and modes
in the convection zone by their frequencies. In addition to
the frequency shift mentioned previously that arises from
the nature of the stratification (negative in the radiative zone
and positive in the convection zone), we expect a Doppler
shift based on the difference in the rotation rate between the
two zones. Because the radiative interior is rotating slightly
slower than the frame rate of our model, we expect a negative
∆Ω correction in Equation (15). Conversely, the convection
zone is rotating faster than the frame rate, necessitating a pos-
itive ∆Ω correction. The expected Doppler shifts thus have
the same sign as the frequency shift identified by Wolff &
Blizard (1986).

Figure 12 displays power profiles for the (l,m) = (4, 4)
sectoral mode at full frequency resolution at the base of the
radiative interior and in the lower convection zone. The pur-
ple dashed line marks the expected frequency for modes in a
region rotating at the frame rate (where ∆Ω = 0) and with
no stratification correction, δωstrat = 0. We can clearly see



15

Figure 10. HFR poloidal-velocity power—(a,c) Poloidal-velocity power spectra summed over two radii near the surface, pre-
sented for (a) equatorially symmetric modes and (c) equatorially antisymmetric modes consistent with the symmetries in radial
vorticity. vθ shares the same symmetries as radial vorticity, but vr has the opposite. To make the “symmetric” spectra, we thus
sum over λ = 0 and 2 in |vθ|2 and λ = 1 and 3 in |vr|2. For the “antisymmetric” spectra we sum over the converse pairs. The
retrograde mixed mode is again labeled I, with open circles denoting numerical values from Bekki et al. (2022b). Equatorial
Rossby waves are marked with closed circles. HFR mode observations from Hanson et al. (2022) (plus signs) and numerical
eigensolver results from Bhattacharya & Hanasoge (2023) (symmetric modes marked in stars and antisymmetric modes marked
in times signs) and Triana et al. (2022) (triangles) are overplotted. Five identified HFR ridges are marked with roman numerals
II–VI. (b, d) m = 9 power profiles for vθ and vr power spectra at the two different radii, with the corresponding HFR modes
marked with roman numerals. (b) shows vθ summed over λ = 0 and 2 and vr summed over λ = 1 and 3. (d) shows the converse.
While vθ is greater at both radii, the difference between vθ and vr decreases deeper in the interior.

that the power profile within the radiative interior has a mean
frequency that is higher in magnitude than the purple dashed
line (more negative), while the convection-zone profile has
its mean at a lower-magnitude frequency (less negative).

With this expected frequency difference in mind, we av-
erage the power in each mode over the radiative interior
and over the convection zone and calculate the first fre-
quency moment ⟨ω⟩ of the power distribution separately in
each region (the angular brackets here referring to a power-
spectrum-weighted average). Figure 13 shows the difference,
⟨∆ω⟩ = ⟨ω⟩cz − ⟨ω⟩ri, in the mean frequencies for the con-
vection zone and radiative interior, scaled by the 2D disper-
sion relation value ω2D = 2mΩ0/l(l + 1). Because ⟨∆ω⟩
is always positive, the convection zone modes always have
a lower frequency (less negative) than those in the radiative
interior, as predicted by Wolff & Blizard (1986). There is not

a clear relationship between frequency difference and latitu-
dinal node number λ, but for the sectoral modes, ⟨∆ω⟩ does
increase with m.

The distinct shift in frequencies between equatorial Rossby
waves in the radiative interior and those in the convection
zone suggests that the equatorial Rossby waves are behaving
as Wolff & Blizard (1986) predicted. The waves are split into
two different families. One family has frequencies that are
more negative than the classic dispersion relation would in-
dicate, and these live in the radiative interior, i.e., they prop-
agate in the radiative interior and are evanescent in the con-
vection zone. Conversely, the other family has frequencies
that are less negative than the classic 2D dispersion relation
and live in the convection zone (i.e., they propagate in the
convection zone and are evanescent in the radiative interior).
The frequency shift between these two families is tiny (on
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Figure 11. Convective features in spectra— Radial-vorticity spectra for λ = 0 at three distinct radii in the convection zone: (a)
0.728R⊙, (b) 0.835R⊙, and (c) 0.935R⊙. Each column has been normalized by the largest value for that m and shown on a
logarithmic scale. The black dashed line shows the Doppler shift due to the radial differential rotation, given by m∆Ω. ∆Ω is
the average differential rotation in latitude at each depth and is valued at (a) 0.007Ω0, (b) 0.015Ω0, and (c) 0.036Ω0. At large
m, the convection is Doppler-shifted due to the differential rotation in the convection zone.

Table 2
Summary of Observed and Modeled Solar Inertial Modes

Type Simulation
Location

Have they been observed
and identified?

Have they been identified
in other models?

Equatorial Rossby waves, sectoral modes RI and CZ Yese.g., 1 Yese.g., 2,3

Equatorial Rossby waves, tesseral modes RI and CZ Maybe4 Yes4,5

Retrograde mixed modes CZ Maybe6 Yes2

Thermal Rossby waves CZ No Yese.g., 2, 7, 8

HFR modes, equatorially symmetric λ = 0 CZ No Yes9

HFR modes, equatorially anti-symmetric λ = 1 CZ Yes10 Yes4,9,11

HFR modes, λ ≥ 2 CZ No No

High-latitude modes – Yes12 Yes2,5

Critical-latitude modes – Yes12 Yes2,3,5

1 Löptien et al. (2018), 2 Bekki et al. (2022b,a), 3 Gizon et al. (2020), 4 Triana et al. (2022), 5 Fournier et al. (2022), 6 Waidele & Zhao (2023),
7 Hindman & Jain (2022), 8 Hindman & Jain (2023), 9 Bhattacharya & Hanasoge (2023), 10 Hanson et al. (2022), 11 Bekki (2023), 12 Gizon

et al. (2021)

Table 2. A summary of inertial waves, where they are found in this simulation—radiative interior (RI) and/or convection zone (CZ)—and the
observations and models that have referred to them in the recent literature.
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Figure 12. Radial variation of the power distribution of a Rossby wave— Line profiles for power spectra of the radial vorticity
for the single spherical harmonic component (l,m) = (4, 4). The blue spectrum is at a radius of 0.502R⊙ located at the base
of our radiative interior, and the orange is at 0.776R⊙ within the lower portion of the convection zone. The purple line is the
value Equation (15) gives when ∆Ω = 0, or what we would see if these waves lived in a region rotating at the frame rate of the
simulation. We can clearly see that the equatorial Rossby waves in the radiative interior have a lower central frequency than those
in the convection zone, potentially indicating two different wave families residing in two different cavities.
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Figure 13. Frequency differences—The difference in mean
frequency ⟨ω⟩ = ⟨ω⟩cz−⟨ω⟩ri between modes averaged over
the radiative interior and modes averaged over the convec-
tion zone. ⟨∆ω⟩ has been non-dimensionalized by the dis-
persion relation value ω2D = 2mΩ0/l(l + 1). While there is
not a clear relationship between latitudinal node number and
frequency difference, the mean frequency for the convection
zone is always less negative than those in the radiative inte-
rior. We can see that for the sectoral modes, this difference
increases with m.

the order of 0.01Ω0) and would likely have gone unnoticed
in observations. The observed linewidths are typically 20–40
nHz (e.g., Löptien et al. 2018), which corresponds to 0.3–0.6
Ω0; hence, an observed spectral peak is too broad to sepa-
rate the two potential peaks. Furthermore, since the deeply
seated modes that live in the radiative interior are likely to
have lower amplitude at the solar surface due to their evanes-
cence in the convection zone, current photospheric observa-
tions are inherently less sensitive to them.

6.1.2. Do We See Radial Overtones?

In addition to splitting the power into two spectral peaks
due to potentially distinct stable-zone and convection-zone
mode cavities, the power profiles for the equatorial Rossby
waves are clearly not Lorentzian and may actually be the
superposition of many under-resolved peaks. The spectrum
for the (l,m) = (4, 4) mode as seen in the radiative inte-
rior (Figure 12) evinces many narrow peaks. To our eyes,
these do not look like realization noise spikes as many of the
peaks smoothly span multiple nearby frequencies. However,
we admit that the stochastic excitation of these modes has
only begun to be explored (see Philidet & Gizon 2023), and
frequency correlations in the realization noise are poorly un-
derstood.

If real (and not noise), the closely spaced, under-resolved
peaks could be radial overtones of the equatorial Rossby
waves in the radiative interior. Because they exist in a highly
stratified, stable environment, these radial overtones would

Figure 14. Mixed modes—Power spectra for the poloidal ve-
locity power, summed over λ = 0–3, averaged across two
radial slices near the surface. Prograde-propagating waves
have been shown with negative values of azimuthal order m
and negative frequencies ω/Ω0. The Busse modes, labeled
“0”, are marked with values from Hindman & Jain (2022).
Numerical values from Bekki et al. (2022b) mark the previ-
ously noted mixed modes, with the prograde Roberts modes
(open squares), labeled “1”, and the retrograde branch (open
circles) labeled “I”. Sectoral equatorial Rossby waves are
marked with filled circles. Ridge II, which corresponds with
the observed HFR modes, appears to cross m = 0 and merge
with the prograde thermal Rossby wave with two latitudinal
nodes in vϕ, labeled “2”. This potentially indicates that all of
these waves are mixed modes in the same family, with ther-
mal Rossby waves making up the prograde branch and HFR
modes making up the retrograde branch.

be very closely packed in frequency with a spacing likely to
be inversely proportional to the square of the buoyancy fre-
quency (see Vallis 2017; Albekioni et al. 2023). Our non-
dimensional frequency resolution is 1.1 × 10−4, but Wolff
& Blizard (1986) estimate the radial splitting between peaks
to be as small as 2 × 10−4. We do not have the frequency
resolution, nor with the present modelling results can we av-
erage over sufficient realizations for noise reduction, to make
a definitive statement or to distinguish between fine-scale
modal structure and realization noise.

The issue of whether radial overtones are present is fur-
ther complicated by the presence of differential rotation. It
is well-known that shear flows permit the existence of addi-
tional families of inertial waves (e.g., Kuo 1949; Mack 1976),
such as the critical-latitude modes (Gizon et al. 2021, 2020).
These additional modes also are expected to have a dense
spectra with peaks that blend together (Philidet & Gizon
2023) and without detailed information about the eigenfunc-
tions may be very difficult to disentangle from radial over-
tones.

6.2. HFR Modes May Be the Retrograde Branch of Thermal
Rossby Waves

In Section 5.4, amongst the retrograde propagating waves,
we find two equatorially symmetric bands of power and
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three anti-symmetric bands of power (labelled II–VI in Fig-
ures 7 and 10). The lowest-frequency symmetric and anti-
symmetric bands are consistent with previous HFR mode
observations and simulations, but the additional ridges are
new. These lesser features are likely latitudinal overtones of
these HFR modes. Given that we are seeing the same features
across different latitudinal orders (Figure 9), the eigenfunc-
tions of these waves are linear combinations of the spherical
harmonics.

While we suspect that these five ridges are all HFR modes,
there are still open questions about the physical mechanism
that produces them. Jain & Hindman (2023) used an analytic
model to study the radial and latitudinal propagation of ther-
mal Rossby waves in an isentropically stratified atmosphere.
For modes with latitudinal propagation, they find a new set of
retrograde-propagating inertial waves whose eigenfrequen-
cies and latitudinal behavior bear a qualitative resemblance
to the HFR modes—see Figure 5 in Jain & Hindman (2023).
These retrograde inertial waves are the retrograde branch of
the prograde thermal Rossby waves. They only exist for
waves that possess latitudinal nodes, and for m = 0 the mo-
tions consist of rolls with axes aligned with lines of constant
latitude. For m ̸= 0, the modes have fully 3D motions. No-
tably, these modes have similar latitudinal behavior to the
potential HFR modes that we have identified in our simula-
tion, with latitudinal overtones occurring at higher and higher
(negative) frequencies without limit.

If the HFR modes are the same type of mode as identi-
fied by Jain & Hindman (2023), then the HFR modes are in
the thermal Rossby-wave family and are mixed modes. By
this we mean that the prograde thermal Rossby-wave branch
smoothly transitions to a retrograde HFR mode as the az-
imuthal order m passes through zero from positive to nega-
tive values.

Figure 14 plots the power spectra for the poloidal velocity
power, summed over λ = 0–3, averaged across two radial
slices near the surface. Prograde-propagating waves have
been shown with negative values of both the azimuthal or-
der m and frequency ω/Ω0 to better make mixed-mode rela-
tionships clear. The prograde-propagating thermal Rossby
waves are again labeled 0, 1, and 2, while the retrograde
branches are labeled with roman numerals. For example, the
previously discussed mixed mode (Section 5.3) is denoted
with open circles for the retrograde modes (labeled I) and
open squares for the prograde modes, i.e., Roberts modes
(labeled 1), with numerical values obtained from Bekki et al.
(2022a). The Busse mode (labeled 0) is again marked by
closed squares with numerical values from Hindman & Jain
(2022).

In Figure 14, we note that the anti-symmetric HFR branch
(II) seems to flow into the prograde thermal Rossby wave
with two latitudinal nodes (2), which directly relates the pri-
mary HFR observations to the previously noted latitudinal
overtone. Additionally, while it is not as visible in this figure,
we remind the reader that we identified a potential thermal
Rossby wave with high frequency and three latitudinal nodes
in Figure 8b (see Section 5.2). This overtone was most visi-

ble for high-m values, and has a frequency of opposite sign
but suspiciously similar magnitude to numerical HFR-mode
results. Ridge III in Figure 14 could potentially transition
into this higher-order thermal Rossby wave. Ridges IV–VI
may exhibit similar patterns, though it is difficult to make a
definitive conclusion due to their low amplitudes.

Furthermore, the retrograde inertial wave identified by
Bekki et al. (2022b) has already been shown to be a mixed
mode that transitions (when prograde propagating) to a ther-
mal Rossby wave, specifically to one with one node in vϕ in
latitude. The equatorial symmetry of this mixed mode and
its frequency suggests that it might be a member of the HFR
family. If true, the picture becomes simple. There are only
two unique families of inertial waves in the convection zone.
We have equatorial Rossby waves which are primarily hori-
zontal in motion. Separately there exists a sequence of lati-
tudinal overtones of a truly 3D mode that is a prograde ther-
mal Rossby wave “mixed” with a retrograde HFR mode, with
the Busse mode as the gravest member. The mode found by
Bekki et al. (2022b), is just one member of this series.

6.3. Absent Inertial Waves

While this simulation features many types of inertial
waves, several varieties are notably missing. We find no
evidence of critical-latitude modes (e.g., Gizon et al. 2020,
2021), most likely due to the relatively weak differential ro-
tation in this model. Additionally, we find no evidence of
high-latitude modes (e.g., Gizon et al. 2021), also potentially
due to the weak differential rotation. Through thermal wind
balance, weak differential rotation leads to weak latitudinal
entropy gradients, and the high-latitude modes have been
demonstrated to reach large amplitude due to baroclinic in-
stability (Bekki et al. 2022b). However, we further acknowl-
edge that the spectral decomposition into spherical harmon-
ics that we perform is not the most robust way to identify
high-latitude features. Finally, as discussed in Sections 2
and 4, there is no evidence of the splitting of Rossby waves
into fast and slow MHD Rossby waves by the magnetic field.
This absence is most certainly due to the rather weak mag-
netic fields generated by this particular dynamo, and the re-
sulting magnetic splittings are too small to discriminate (see
Figure 2c).

7. CONCLUSION

In this work, we presented a 3D numerical simulation of
the upper radiative interior and convection zone that features
a wide variety of inertial oscillations. We summarize our pri-
mary findings as follows:

1. Rossby waves in the radiative interior: We presented
a rich wave-field of equatorial Rossby waves in the radiative
interior and demonstrated that they account for most of the
horizontal motion in that region. Their presence raises ques-
tions about their impact on dynamo and transport properties
in a region of the Sun that has historically been considered
rather quiescent.

2. Rossby-wave cavities: We found both sectoral and
tesseral equatorial Rossby waves throughout the convection
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zone that seem to occur at frequencies distinct from those
in the radiative interior. This implies that there are poten-
tially two unique families of equatorial Rossby waves living
in separate radiative-interior and convection-zone cavities.
The presence of both sectoral and tesseral equatorial Rossby
waves of varying node number throughout the domain bodes
well for their potential helioseismic utility, but it does raise
some questions. We do not yet know how these modes are
excited and whether this mechanism differs between the ra-
diative interior and convection zone. We also need to develop
a better understanding of the conditions under which these
waves live and how they interact with each other. Stratifica-
tion and superadiabaticity in particular may play a significant
role in controlling the mode frequencies and determining the
amplitude of any given radial overtones.

3. HFR modes and thermal Rossby waves: We noted the
presence of both previously observed and modeled branches
of HFR modes along with three additional branches that are
probably their latitudinal overtones. These modes seem to
be mixed with thermal Rossby waves. If true, the theoreti-
cal picture becomes simple and unified. The Busse modes,
with no nodes in latitude, are the fundamental mode. The
previously noted mixed mode, which relates Roberts modes

to a 3D retrograde oscillation, is the first latitudinal overtone.
The anti-symmetric HFR modes, mixed with prograde ther-
mal Rossby waves with two nodes in latitude, are the second
latitudinal overtone, and so on.
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APPENDIX

A. LINE FITTING

Radial-vorticity spectral line profiles were fit for a selection of thermal Rossby waves (ridge 0) and the retrograde mixed mode
(ridge I). Power profiles were fit with the sum of a Lorentzian and a linear background term:

f(ω|A,ω0, γ, B0, α) =
A

1 +
(

ω−ω0

γ

)2 +B0 + αω, (A1)

where A is the amplitude, ω0 is the central frequency, γ is the width, and B0 and α are linear background parameters. We used
the least squares curve fit routine from the Python SciPy package. The results of this fitting are given in Tables 3 and 4. The
central frequency and width parameters have been non-dimensionalized by the rotation rate for ease of comparison with other
studies.
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Table 3
Thermal Rossby Wave Line-Fitting Results

Mode Amplitude Center [ω0/Ω0] Width [γ/Ω0] B0 α Q-factor

m = 2 (2.41± 0.09) ×10−9 0.333± 0.001 0.033± 0.002 (9± 7) ×10−11 (−0.5± 1) ×10−13 10

m = 3 (2.23± 0.06) ×10−9 0.458± 0.001 0.050± 0.002 (1.2± 0.4) ×10−10 (−1.8± 0.5) ×10−13 9

m = 4 (2.67± 0.07) ×10−9 0.559± 0.001 0.048± 0.002 (2.5± 0.7) ×10−10 (−2.6± 0.8) ×10−13 12

m = 5 (2.16± 0.07) ×10−9 0.648± 0.002 0.067± 0.005 (2.5± 2) ×10−10 (−3± 1) ×10−13 10

m = 6 (1.90± 0.06) ×10−9 0.741± 0.003 0.083± 0.006 (4± 1) ×10−10 (−3.9± 0.9) ×10−13 9

m = 7 (2.4± 0.1) ×10−9 0.811± 0.004 0.077± 0.008 (9± 2) ×10−10 (−7± 2) ×10−13 10

m = 8 (3.0± 0.1) ×10−9 0.879± 0.003 0.074± 0.007 (1.8± 0.3) ×10−9 (−1.5± 0.2) ×10−12 12

m = 9 (4.4± 0.2) ×10−9 0.917± 0.003 0.067± 0.007 (2.2± 0.6) ×10−9 (−1.8± 0.6) ×10−12 14

m = 10 (6.9± 0.2) ×10−9 0.944± 0.001 0.052± 0.004 (3.7± 0.6) ×10−9 (−2.7± 0.5) ×10−12 18

Table 3. Fits with the Lorentzian profile given by Equation (A1) to the power profiles for the Busse modes with m = 2 to m = 10 and λ = 1,
at a radius of 0.889R⊙. The power profiles were binned down by a factor of 32 in frequency prior to fitting.

Table 4
Retrograde Mixed Mode (Ridge I) Line Fitting Results

Mode Amplitude Center [ω0/Ω0] Width [γ/Ω0] B0 α Q-factor

m = 0 (4± 9) ×10−11 −0.611± 0.001 0.063± 0.002 (2± 5) ×10−14 (2± 9) ×10−17 10

m = 1 (8± 6) ×10−11 −0.519± 0.001 0.053± 0.002 (2± 3) ×10−14 (3± 4) ×10−17 10

m = 2 (5.7± 0.7) ×10−10 −0.432± 0.001 0.050± 0.003 (8± 5) ×10−14 (1.2± 0.6) ×10−16 9

m = 3 (1.35± 0.08) ×10−9 −0.348± 0.002 0.051± 0.005 (1± 1) ×10−13 (2± 1) ×10−16 7

m = 4 (2.44± 0.07) ×10−9 −0.278± 0.003 0.055± 0.006 (2.4± 0.8) ×10−13 (3.5± 0.7) ×10−16 5

m = 5 (3.1± 0.1) ×10−9 −0.216± 0.003 0.060± 0.008 (4± 2) ×10−13 (8± 2) ×10−16 4

m = 6 (3.7± 0.1) ×10−9 −0.140± 0.003 0.082± 0.006 (3± 2) ×10−13 (9± 2) ×10−16 2

m = 7 (3.1± 0.2) ×10−9 −0.100± 0.003 0.060± 0.007 (1.5± 0.5) ×10−12 (3.7± 0.4) ×10−15 2

Table 4. Lorentzian fits (Equation (A1)) to the power spectra of the retrograde mixed modes (ridge I) for l = m = 1 to l = m = 7, along with
the (l,m) = (2, 0) mode, at a radius of 0.935R⊙. Power profiles were binned down by a factor of 32 in frequency prior to fitting.
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